If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k in (-oo:+oo)
(4*k^4)/3-((37*k^2)/3)+9 = 0
(4*k^4)/3+(-37/3)*k^2+9 = 0
4/3*k^4-37/3*k^2+9 = 0
t_1 = k^2
4/3*t_1^2-37/3*t_1^1+9 = 0
4/3*t_1^2-37/3*t_1+9 = 0
DELTA = (-37/3)^2-(4/3*4*9)
DELTA = 937/9
DELTA > 0
t_1 = ((937/9)^(1/2)+37/3)/(4/3*2) or t_1 = (37/3-(937/9)^(1/2))/(4/3*2)
t_1 = 3/8*((937/9)^(1/2)+37/3) or t_1 = 3/8*(37/3-(937/9)^(1/2))
t_1 = 3/8*(37/3-(937/9)^(1/2))
k^2-(3/8*(37/3-(937/9)^(1/2))) = 0
k^2-3/8*(37/3-(937/9)^(1/2)) = 0
1*k^2 = -(-3/8*(37/3-(937/9)^(1/2))) // : 1
k^2 = 3/8*(37/3-(937/9)^(1/2))
k^2 = 3/8*(37/3-(937/9)^(1/2)) // ^ 1/2
abs(k) = (3/8)^(1/2)*(37/3-(937/9)^(1/2))^(1/2)
k = (3/8)^(1/2)*(37/3-(937/9)^(1/2))^(1/2) or k = -((3/8)^(1/2)*(37/3-(937/9)^(1/2))^(1/2))
t_1 = 3/8*((937/9)^(1/2)+37/3)
k^2-(3/8*((937/9)^(1/2)+37/3)) = 0
k^2-3/8*((937/9)^(1/2)+37/3) = 0
1*k^2 = -(-3/8*((937/9)^(1/2)+37/3)) // : 1
k^2 = 3/8*((937/9)^(1/2)+37/3)
k^2 = 3/8*((937/9)^(1/2)+37/3) // ^ 1/2
abs(k) = (3/8)^(1/2)*((937/9)^(1/2)+37/3)^(1/2)
k = (3/8)^(1/2)*((937/9)^(1/2)+37/3)^(1/2) or k = -((3/8)^(1/2)*((937/9)^(1/2)+37/3)^(1/2))
k in { (3/8)^(1/2)*(37/3-(937/9)^(1/2))^(1/2), -((3/8)^(1/2)*(37/3-(937/9)^(1/2))^(1/2)), (3/8)^(1/2)*((937/9)^(1/2)+37/3)^(1/2), -((3/8)^(1/2)*((937/9)^(1/2)+37/3)^(1/2)) }
| -33-2x=8x+24 | | -5[6x+6]-10=-130 | | 5[-6x-5]-12=43 | | 3x+10+80=360 | | 3x+6=-126 | | 5(y-3)+7=33 | | -6[3x-2]-9=-129 | | 2x^2+18x-24=0 | | 5x+3=143 | | 2(6m-1)=8m | | 14/15/3 | | [6x+1]-8=39 | | 7x+74=90 | | 20-x=4x | | [x+10]-12=7 | | 2x+24=2x^2+16x | | 3x-4+6x=15 | | 6[6x+7]-7=23 | | -4/5-2/3y=-1/2 | | t^2+8t+16+42=13t+52 | | -1/4/-4 | | 9x^2+24x^3+16y^4=0 | | 5/2.19 | | 5x=4(x+17) | | 30x^2+59x+15=0 | | 7j+14=21 | | 2x(x+3)=-4 | | 13-4x=-6x+17 | | n+5+21+n=0 | | x+7x+5=77 | | y=-7/5x-2 | | 6[x+3]+6=96 |